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Localization of electronic states in 2~ disordered systems 

M Schreiber and M Ottomeier 
Institut fix Physikalische Chemie. Johanner-Gutenberg-Univenilbt. 
Jakob-Welder-Weg I I ,  D-6500 Mainz. Federal Republic of Germany 

Received 15 October 1991 

Abstract. Results of numerical investigations of the Anderson model 01 localization are 
reported. Using the transfer matrix method and finite size scaling, the localization lengths 
of electronic states in 2~ systems with energetic disorder are determined on honeycomb, 
square.andtriangular1attices. Whiletheactualvaluesofthelocalizationlengthataparlicular 
disorder differ for the different coordination numbers, complete localization is found in all 
cases. Thisresult isinagreement with thescaling hypothesis, but incontrast torecentclaims. 

1. Introduction 

The question, whether electronic states in disordered systems are localized for any 
disorder yielding an insulating behaviour, or whether a mobility edge can be defined by 
a critical disorder below which extended states allow metallic transport through an 
infinite sample, has been a central issue of the investigations of disordered systems since 
the original formulation of the problem by Anderson (1958). 

For one-dimensional (ID) systems the following statements can be proven in a 
mathematically rigorous way (Ishii 1973, Erdos and Herndon 1982, Frohlich etal 1985): 
even for an arbitrarily small but finite strength of the disorder all states are localized 
irrespective of their energy. The DC conductivity vanishes in the limit of .vanishing 
temperature. For a finite system the conductance decreases exponentially and the 
resistance increases exponentially with increasing length of the system. 

In ZD and 3~ systems, on the other hand, no mathematically rigorous theory of 
localization exists. Only in the asymptotic regions of large disorder or large energies in 
the band tails can the appearance of localized states be proven. A general proof for the 
existence of localized and/or extended states or for the existence of a disorder-induced 
metal-insulator transition is not available. Early numerical investigations (Licciardello 
andThouless 1975.1978, Weaire and Srivastava 1977, Stein and Krey 1980,1981) gave 
values for a critical disorder corresponding to the metal-insulator transition in ZD as well 
as 3 ~ ,  but these calculations were suffering from the very limited system size that could 
be treated in those days. 

Substantial progress was made when the problem was formulated in terms of the 
renormalization group (Wegner 1976) leading to the one-parameter scaling hypothesis 
of localization (Abraham etal 1979). Accepting the main supposition that the assumed 
scaling properties of the system close to a possible phase transition can be described by 
only one scaling variable and employing the quantitative results of the weak localization 
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theory for the quantum corrections to the metallic conductivity (Bergmann 1984) 
together with the assumption of continuity for the logarithmic derivative of the con- 
ductance it can be argued that a metal-insulator transition can only exist in 3D systems, 
while inzo systems(at least without electron-electron interactions and without magnetic 
field) all quantum states of an infinitely large. disordered sample are localized even for 
a vanishingly small but finite disorder. 

The scaling hypothesis was convincingly corroborated by a numerical method 
(MacKinnon and Kramer 1981) employing a recursive technique in connection with a 
real-space renormalization procedure. This approach allowed the determination of the 
metal-insulator transition in 3D and also showed the localization of electronic states in 
?D for verysmall disorder. Numerous subsequent applicationsof thisapproach for larger 
and larger systems, for different distributions of the random site energies, for various 
energies throughout the whole band including the band edges, and with improved 
accuracy have corroborated these findings (for a recent overview. see: Kramer el a/ 
1990), although some doubts have been cast on the universality of the scaling theory 
(Schreiber 1991). 

All these calculations were performed on square or simple cubic lattices. This gave 
rise to an interesting speculation (Srivastava 1989) whether a metal-insulator transition 
might occur in a ZD lattice which has the same coordination number as the simple cubic 
lattice, namely six nearest neighbours. This would not necessarily be in contradiction to  
the above mentioned conclusions from the scaling hypothesis, because the quantum 
interference could yield different correction terms to the conductivity for different 
connectivities. Thespeculation was basedon the argument, that the localization problem 
in a real lattice can be mapped onto the localization problem in a Cayley tree lattice in 
which the non-contributing branches are trimmed off (Srivastava 1989). Using an exact 
method for calculatingthe connectivity constant for the hierarchy ofclosed self-avoiding 
random walks, which are pertinent to the localization problem in the given lattice, 
the critical disorder and the mobility edge were derived for different lattices. The 
calculations for ZD lattices revealed the surprise that a mobility edge seems to exist for 
the triangular lattice (but not for the honeycomb lattice). while the square lattice is a 
borderline case (Srivastava 1989). 

In the present paper we report large-scale computationson these three latticesusing 
the recursive technique of MacKinnon and Kramer (1983). We demonstrate that finite- 
size scaling is possible in all cases. The high accuracy of our data unambiguously shows 
that all states are localized even for the smallest disorder considered. Doubts have arisen 
about the universality of the one-parameter scaling hypothesis (Kravtsov and Lerner 
1984). Therefore it  is interesting to note that a simultaneous scaling of all data for the 
different lattices is possible. 
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2. Calculation of the transmission probability through a quasi-io system 

Our investigation is based on the Anderson (1958) Hamiltonian which iscommonly used 
for numericalstudiesof the localization problem. Insite representation the Hamiltonian 

describes a regular lattice in the tight-binding approximation with nearest neighbour 
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Figure 1. Sections of two-dimensional lattices with (a) square; (b)  honeycomb; and ( E )  
triangular structure. The mth site of the Lth layer is marked by a square, its neighbours in 
the same and the preceding layer by circles, a neighbouring site in the next layer is marked 
by a diamond. a second neighbouring site in the next layer is marked by a triangle. 

transfer only and random potential energies E~ which are independently chosen accord- 
ing to a box distribution of width W .  As usual we define an energy scale by setting V = 
1. 

For the following investigation we employ the transfer matrix technique to calculate 
the localization length of electronic states in very long qUaSi-lD systems with small cross- 
section M and very long length L ,  which are then used to reach ZD systems by means of 
a finite-size scaling procedure. Although this approach (MacKinnon and Kramer 1981, 
Pichard and Sarma 1981) is now a standard one, we sketch it here because the application 
to the triangular lattice is not straightforward. 

The Schrddinger equation corresponding to the Hamiltonian in (1) can be written as 
an initial-value problem 

Here H M ( L )  comprises the Hamiltonian matrix elements on the Lth layer and A ( L )  
describes Mlinearly independent wave-functions at the Msites within the Lth layer. In 
a ID system this means that If&) = H,(L  ) = E' and A ( L )  are scalars yielding the 
wave-function 1 fp) = ZLA(L) I L). 

A(L + 1) = (El - H,(L))A(L) - A(L - 1). (2) 

Considering a ZD square lattice as depicted in figure l ( a ) ,  HM(L) reads 
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(Only the non-zero elements in rows 1,2, m, Mare indicated, an additional index L for 
the potential energies is omitted for clarity.) Here the off-diagonal elements describe 
the bonds between the M sites within the Lth layer, employing a periodic boundary 
condition. The A(L)  are now M X M matrices which contain the expansion coefficients 
of M wave-functions at the M sites within the Lth layer, and 1 in (2) now denotes the 
M X M unity matrix. 

The application of this recursion to a honeycomb lattice is straightforward. The 
different connectivity as illustrated in figure l(6) is reflected in the matrices 
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for the evenandoddlayers, respectively, withm andm'odd. Obviously, thisconstruction 
is restricted to an even number of sites per layer due to the periodic boundary condition. 

The simplicity of the recursion relation in (2) can be attributed to the lattice struc- 
tures: ifthe(L + 1)thlayerisaddedtothesampleof L layers,everynewsiteisconnected 
to the old sample by only one bond in the square as well as in the honeycomb lattice. 
The amplitudes of the wave-functions at the new site (denoted by a diamond in figure 
1) can be derived by applying the Hamiltonian in (1) to the wave-functions on the 
appropriate site m in the Lth layer (marked by a square in figure l), i.e. by evaluating 
HI m). Except for the new (diamond) site, only the sites (indicated by circles) at which 
the amplitudes are already known are involved, because the transfer term of the Ham- 
iltonian is restricted to nearest neighbours. 

A discrepant situation arises in the triangular lattice as depicted in figure l(c). If one 
applies the Hamiltonian to the wave-functions on the mth site of the Lth layer in order 
to determine the amplitudes at the m'th site in the (L + 1)th layer, one ha5 also to 
considerthe,asyetunknown,amplitudesat the(m' + 1)thsiteofthenewlayer (marked 
by a triangle). The respective recursion relation now reads 

I(L + 1)A(L + 1) = ( E l  - H,%(L))A(L) - I(L - l )A(L - 1) ( 5 )  

where H,%(L) coincides with the matrix in (3) and the operator I is given by the matrices 
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I(L + 1) = I(L - 1) = [ .!. 1 . 1  

I(L) = [ l  ';.:) 
(6) for odd and even layers, respectively. Multiplying (5) by I-' again yields a simple 
recursion relation, but only for odd values of A4 because other.wise the matrices I are 
singular and cannot be inverted. 

For all lattices the recursion can be expressed by means of a transfer matrix 

-'j (7) 

( j = k (  A ( L  - 1) j = T ' (  "l(O),  T , = r I t ,  I= I (8) 

l - 1 2 5 -  I - 'H,w(L)  

0 

where I is given by (6) for the triangular lattice and by the unity matrix 1 for the square 
and the honeycomb lattice. With these transfer matrices the evaluation of the wave- 
functions along a strip of width M and length L can be determined in the following way: 

f L  = 

L 
A ( L  + 1) A ( 1 )  

A ( L )  
The product matrix TL diverges exponentially with increasing L ,  but a limiting matrix 

T= L+ l im(TLTt) 'RL = (9) 

existsaccording tothe theorem ofOseledec(l968), As the product matrixTissymplectic, 
its eigenvalues appear pairwise and can be written as exp(ri) and exp(-q). The zi and 
- ri are the Lyapunov characteristic exponents which characterize how the initial states 
'drift apart' exponentially. The inverse values reflect the different characteristic length 
scales. The largest length (i.e. the inverse of the smallest Lyapunov exponent) describes 
the weakest possible decay of the transmission probabilityfor astate at thegivenenergy. 
This length is commonly associated with the localization length, implicitly assuming that 
the electronic states are exponentially localized. We shall denote this length by AM. In 
the limit of large L this length as well as the other Lyapunov exponents can be computed 
(Pichard and Sarma 1981, MacKinnon and Kramer 1983) from the exponential decay of 
the norm of the orthogonalized column vectors of A ( L ) .  

As the matrix A'I can be associated (MacKinnon and Kramer 1983) with the one- 
electron Green's function describing the probability amplitude for the transition of an 
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electron betw'een the first and the last layer of the qUaSi-lD strip, thedecay length of the 
transmission probability can be calculated more directly from the Euclidean norm of 
A - #  in the following way: 

M Schreiber and M Ottomeier 

Wehave usedthisprocedureforafewparametercombinations tocontrol thevalidity 
of our resultsobtained by meansof the transfer matrix method. For theimplementation 
of the algorithms on a modern computer i t  is important to note that the advantage of the 
transfer matrix method is that it can be much more effectively vectorized. 

it isanessential featureofthe Green'sfunctionmethodaswell as the transfer matrix 
method that the statistical accuracy of the determined decay length can be controlled 
during the recursion. The fluctuations decrease slowly with increasing system size. 
Therefore. it is possible to extend the length of the systems under consideration until 
the error falls below a given accuracy which has generally been taken as 1% in the 
present investigation. A high accuracy is necessary to allow a reasonable subsequent 
treatment of the data by means of the finite-size scaling technique discussed below. A 
further improvement is. however, limited by the available computer resources, because 
the accuracy influences the computation time quadratically. Another problem arises 
because the smallest positive Lyapunov exponent is, unfortunately. the one most sen- 
sitive to a loss of significance due to rounding errors. Therefore, the accuracy of the 
accumulated transfer matrix has to be carefully controlled, otherwise a fast convergence 
towards wrong values of hU can be observed. 

In figure 2 the obtained data for the honeycomb lattice and the triangular lattice are 
presented. Here we restrict ourselves to the band centre, E = 0. For a comparison i t  
should be noted that the number of sites in each layer is 1.5 times larger in the triangular 
latticethanin the honeycomblattice forthesamewidthandthat alllengthsinthepresent 
investigation are given in units of the nearest neighbour distance. 

It can  be clearly seen from figure 2 that h,JM decreases with increasing M in all cases 
except for finite-size effects for the smallest widths. Accordingly, the wave-functions 
can be considered to be already more or less confined within the strip. i.e. they are 
localized. It cannot be expected that an increase of the width would change this behav- 
iour. In order to obtain extended states in the infinite ?D systems, the computed decay 
length should increase faster than M so that the state would grow more and more 
with increasingwidth. This behaviour. which is well known from respective calculations 
in 3~ systems (MacKinnon and Kramer 1983) cannot be found in the present systems. It 
can therefore be safely concluded that all states are localized in these systems. 

This also holds true for the square lattice as determined before (Mactiinnon 
and Kramer 1981, 1983). For the subsequent investigation we have also computed 
the decay length AIM for the square lattice, taking into account the following values 
for the width of the strip: M = 5 .  10, 15, 20, and 32. Respective values for the 
honeycomb and the triangular lattice follow from figure 2. Actual values for the 
disorder parameter W can be found in table 1. This table demonstrates that very 
large systems are necessary in order to obtain a reasonable accuracy. Although the 
accuracy of 1% was not reached for the smaller values of the disorder, we believe 
that our data are good enough to draw the above mentioned conclusions that all 
states are localized in ?D systems irrespective of thc number of nearest neighbours. 
This belief will be substantiated in the next section by showing that all data can 
be simultaneously fitted onto a common scaling curve. 
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3. Finite size scaling 

In order to describe the transmission properties of a system with infinite width it is 
necessary to extrapolate thc computed data of A)w with respect to M. This cannot be 
performed in a straightforward manner, because the raw data cover only a relatively 
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Table 1. Decay lengths Eof the transmission probability through a honeycomb, square and 
triangular lattice determined by a finite-size scaling procedure for different values of the 
disorder W .  The length L which was necessary to obtain the raw data with the required 
accuracyof l % i n  therecursive procedure forthelargeslwidthMofthequasi-lostripisalso 
given, The prefix '>' indicates that this accuracy could not be obtained up to the given 
recursion length. In those cases the decay lengths given are determined with an accuracy 
better than 1.2%t. 1.7%t,2.2"/os,2.7%11. Valuesinitalicsindicate that the largest width M 
used for that disorderwas41 only. 

Honeycomb laltice Square lattice Triangular lattice 
, ~ . -  .,...l__.l.,....., 

M' L ( M =  40) 5 L(M=32) E L(M = 6 l )  5 
__ . .ll , , ...._ 

2.5 >4ooow 326977.30 
2.7 >NOW0 109097.3* 
3.0 >400 000 26943.81: 
3.3 >400 WO 7804.9t 
3.6 >4W ow 2911.4t 
4.0 >450000 258.Jt .>300000 IO27.7$., >420000 486631.511 
4.1 513750 235.1 >420 OW 279 999. f B 
4.2 53227.0 223.8 >360WO f975f6 .23  
4.3 495840 1.98.7 >360 WO 121 294.98 
4.4 >450WO 188.51 >360 WO 87292.38 
4.5 >450000 166.6: >3WOOO 380.0t >360 WO 47 071.66 
4.6 438380 145.8 >360 WO 33686.50 
4.7 431 540 133.7 >360 OW 23 479.88 
4.8 397090 115.3 >3600W f 7  9f0.98 
4.9 386370 103.8 >360 WO I 1  168.73 
5.0 > W O W  94.2t 2 6 9 W  171.0 >36OWO 6953.39 
5.1 355560 83.0 >360 WO 5860.4$ 
5 .2  3532W 75.4 >360 WO 4545.0t 
5.3 316310 67.3 23600oo .3155,9t 
5.4 288050 61.4 
5.5 287070 55.2 211950 88.0 >36OOW 1991.8: 
5.7 >360 000 1246.1t 
6.0 214210 34.0 166250 51.3 >360000 699.19 
6.5 157410 22.0 ~ 136890 32.8 >36OWO 291.0t 
7.0 >IO0000 
7.5 90330 
6.0 73040 
8.5 61270 
9.0 51 640 
9.5 43890 

10.0 35810 
11.0 28380 
12.0 22390 
12.5 
13.0 17950 
14.0 15400 
15.0 14694 
16.0 I I  880 
17.0 10960 
17.5 
18.0 96911 

- ,  
15.2t 100900 22.3 ~ >360 000 130.9t 
11.1 ~ 83810 16.7 
8.6 72440 12.5 258714 46.9 
6.8 
5.5  
4 7  

163818 22.9 
... 

4.0 38840 5 . 9 ~  110556 13.8 
3.1 

1.8 
1.6 12040 2.2 31 236 3.7 
1.4 
1.3 

9920 1.6 20880 2.6 
1 . 1  ~. .. ... 

19.0 8710 1 . 1  
20.0 7790 I .o 7710 1.3 16 560 2.0 
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Figure 3. Scaling function for the triangular lattice. All raw data of figure 2(b )  (except those 
values for M = 5 which show drastic finite size effects) are scaled onto a common curve f by 
changing the scale of M-' via fitting parameters W W ) .  

small interval of M-values. It is, however, possible to gain further knowledge about the 
behaviour of the data for M+ m if one assumes that a suitable scaling variable A exists, 
which can be expressed as a function of the system size M and some scaling parameter 
E ,  which comprises the dependence on the disorder Wand the energy E 

A = f ( EIW E = E(W, E) .  (11) 
This assumption corresponds to the ansatz of the scaling theory of localization, in which 
the conductance itself is taken as the relevant scaling parameter. 

Whetherornot therawdataobtainedin thelastsection fulfil thescalingrelation(l1) 
can be quantitatively verified by attempting a mean least squares fit of the data onto a 
common curve by suitably adjusting the scale of M (or equivalently of l/M) by the 
parameter Efor each parameter combination of E and W .  It is demonstrated in figure 3 
that the attempt of finding a common functional relationship f( E / M )  has been successful 
within the accuracy of our raw data. 

The claim of universality of the scaling hypothesis (Abrahams el ai 1979) has been 
questioned (Kravtsov and Lemer 1984, Schreiber 1991). In the present context it is 
possible to test whether at least a universal scaling behaviour can be observed for the 
different lattice structures under consideration. Figure 4 demonstrates that all raw data 
for the square? for the honeycomb, and for the triangular lattice at the band centre can 
be fitted onto a common curve. 

It should be noted, however, that an error of 1% corresponds approximately to the 
size of the symbols of figure 3 and 4. Correspondingly, the inaccuracy of the scaling 
parameter which controls the horizontal shift of the symbols during the fitting procedure 
is considerable especially in the rather flat part of the scaling curves. Moreover, as the 
scaling curve is fixed for large disorder, i.e. for small E (MacKinnon and Kramer 1983), 
highervaluesofthe scalingparameterare more and moreinfluenced by theaccumulation 
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Figure 4. Scaling function obtained by a simultaneous fit 01 the raw data lor the honeycomb 
lattice (*-see figure ? ( a ) ) .  the triangular lattice (V-see figure 2(b))  as well as respective 
dataforthesquarelattice(x).for E =lJineachcdse.Thevaluesof Wthat havebeen taken 
intoaccount arecompiled in table 1. 

of errors. Consequently, we estimate the uncertainty of the largest scaling parameters 
obtained in this investigation to be at least a factor of 2 .  Thus, the above mentioned 
warning is specified; namely, why we consider a high accuracy of the raw data to be 
necessary in order to obtain reliable conclusions. 

The actual dependence of the scaling parameter Son the disorder W is displayed in 
figure 5 for the different lattice structures. Qualitatively, the data agree with the results 
of previous calculations (MacKinnon and Kramer 1983, Zdetsisetal1985), small quan- 
titative discrepancies can be attributed to the mentioned numerically delicate deter- 
mination of the scaling curve. The present data should be more reliable because they 
are based on larger samples than previous investigations. 

The dependence of the scaling parameters on the disorder shown in figure 5 is in 
agreement with the scalingtheoryoflocalization. Inallcasesthedecay length Sincreases 
with decreasing disorder. In the limit W- t  =the decay length diverges. But there is no 
sign of a metal-insulator transition, not even for the triangular lattice. 

The calculated values of the decay length for the different lattice types are compiled 
in table 1. In this table it can also be seen that very large systems have to be taken into 
consideration in order to obtain the scaling parameters for small values of the disorder 
U'. 

In  order to analyze the divergence of the scaling parameter for small disorder 
we have studied various functional dependencies. For the triangular lattice a clear 
dependence 

could be established which is shown in figure 6. We note that this dependence leads to 
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adivergent decay length Eonly for vanishing disorder W .  Accordingly no metal-insulator 
transition at a finite Wcan be expected. 

For the other lattices a similar dependence with considerably smaller prefactors in 
the exponent seems to be asymptotically reached, but the presently available data are 
inconclusive. For thetriangular lattice, however, the dependence in figure 6 is obvious 
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and allow one to extrapolate the obtained values of the decay constant to even lower 
values of the disorder W .  

4. Concluding remarks 

We have demonstrated numerically, within the well-defined error bars of the compu- 
tation, that a one-parameter scaling function can be defined for different two-dimen- 
sional lattices in the band centre. The scaling parameter which corresponds to the 
exponential decay length of the transmission coefficient has been computed for various 
disorders for the three lattice types. It should be noted that this decay length of the 
transmission coefficient does not necessarily mean that the wave-function itself is expo- 
nentially localized. I n  view of recent calculations of the (mu1ti)fractal properties of 
electronic wave-functions in disordered systems (Schreiber and Grussbach 1991) we 
argue that the fractal behaviour of the wave-function manifests itself in the Lyapunov 
characteristic exponents. If the essential fractal dimension is small enough, the wave- 
function will be concentrated on a set with small fractal dimension so that a small 
Lyapunov exponent results. But thisset will be dispersed, accordingly the wave-function 
will formally extend over the whole system. Correspondingly, the transmission prob- 
ability decays strongly so that the state appears to be localized. In 2~ systems the 
multifractal behaviour has been demonstrated for small disorder for various values of 
the energy (Schreiber and Grussbach 1992). Although it is possible to increase the size 
of the system that could be investigated to as much as 720000 sites (Grussbach and 
Schreibcr 1992) it  is impossible to prove that the multifractal behaviourextends to length 
scales as large as the decay lengths found in the present investigation for the smallest 
disorder, Therefore, the possibility cannot be ruled out that the fractal behaviour is 
characteristic for smaller scales only, so that the decay length obtained here can still be 
interpreted as a localization length for the electronic wave-function. It will probably be 
very difficult to clarify this obscurity convincingly. 

In contrast, the present investigation has unambiguously shown that the transmission 
probability decays exponentially for the different ZD lattices irrespective of the coor- 
dination number. In conclusion, no metal-insulator transition can be found, not even 
in the triangular lattice with six nearest neighbours, contradictingrecent proposals based 
on the mapping of the localization problem in the real lattice onto the localization 
problem in a trimmed Cayley lattice. 
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